A new approach for an acoustic-phonetic description of dysarthria
DesPho-APaDy project

L. Crevier-Buchman 1, C. Fougeron 1, C. Fredouille 2, A. Ghio 3, C. Meunier 3, C. Delooze 3, D. Duez 3, C. Gendrot 1, T. Legou 3, N. Lévêque 1, N. Audibert 4, A. Colazo Simon 1, C. Pillot-Loiseau 1, S. Pinto 3, G. Pouchoulin 2, D. Robert 3, F. Viallet 3, C. Vincent 1, B. Teston 3, C. Chevrie-Muller 4

1 Lab. de Phonétique et Phonologie, UMR 7018 CNRS-Paris3/Sorbonne Nouvelle, Paris, France
2 University of Avignon, CERI/LIA, Avignon, France
3 Lab. Parole et Langage, UMR 6057 CNRS Aix-Marseille Univ., Aix-en-Provence, France
4 Lab. MoDyCo, UMR 7114, CNRS- Université Paris 10, Paris, France

A multidisciplinary team
Composed of phoneticians, clinicians, computer science engineers and automatic speech processing

3 partners with 27 participants:

- Laboratoire de Phonétique et Phonologie, Paris (UMR 7018)
- Laboratoire Parole et Langage, Aix en Provence (UMR 6057)
- Laboratoire d’Informatique d’Avignon, Avignon (UPRES 4128)
Rationale and Objectives of the Project

• What do we want?

Identify and quantify reliable markers which are characteristic of different types of dysarthric speech profile, and could be followed in time.

- Severity evaluation
- Disease progression
- Treatment efficacy

Select reliable and robust French acoustic phonetic criteria able to distinguish

- Normal and dysarthric speech
- Different dysarthria types

• Issues?

– Which technique & nature of the markers?
 • Perceptual
 • Acoustic
 • Articulatory

– Which speech dimension to focus on?
 • Presumed altered speech dimension
 • All dimensions

– What resources are available?
 • Single vs. multiple judges (expert-naive)
 • Manual vs. automatic processing devices
Rationale and Objectives of the Project

- **Approaches**
 - Combine semi-automated procedures from tools developed for automatic speech processing or scripts used for acoustic measurements **and**
 - Manual phonetic analysis at different level:
 - Temporal
 - Segmental
 - Suprasegmental

- **Permanent back and forth between manual and automatic procedures**
 - Processing of a large amount of speech files
 - over 100 patients (SLA, Parkinson, Cerebellar)
 - with 1-2 min. of text reading per patient

- **With minimal cost of time and human expertise**

The Multiple-Field Query Database

The CCM (Claude Chevrie-Muller)
Corpus recorded over 30 years
(1965 – 1997)
~1000 hours of disordered speech, 5000 patients – adults and children
* 860 patients **classified** according to their **neurological diagnosis**
* 60 control speakers

Data recorded
Sound, EGG (ElectroGlottoGraph)
The Multiple-Field Query Database:

- The ANH (Aix-Neurology-Hospital) Corpus recorded for the past 15 years:
 * 990 patients,
 * 160 control speakers

Data recorded
Sound, aerodynamic.

Selection of Patients for the Acoustic Phonetic Study

- Focus on neurophysiologic alterations of 3 neurologic systems:
 - Pyramidal system: ALS dysarthria (30 patients)
 - Cerebellar system: ataxic dysarthria (30 patients)
 - Extrapyramidal system: Parkinsonian dysarthria (30 patients from the ANH corpus)

- Selection based on:
 - Severity of the dysarthria (clinical information, the certainty of the diagnosis, the ongoing treatment, patient demographics)
 - The relatively intelligible speech
Type of Acoustic parameters

- **Voice quality** and **fundamental frequency** measurements
 - to characterise laryngeal control
 - $F0$ (Hz) (mean+stdev) measured in the middle of vowels +
 - $F0$ contours on selected sentences

- **Amplitude** measurements
 - for respiration & laryngeal control

- Measurements related to **nasalisation**
 - for velopharyngeal functions

- **Spectral** and **durational** correlates for vowels and consonants
 - for kinematics of supralaryngeal articulatory movements and
 - movement coordination
 - $F1$, $F2$, $F3$ (mean+stdev) measured at different points in the vowels

Type of Acoustic parameters

- Measurements linked to the **temporal** organisation at a suprasegmental level,
 - *Speech rate* (phoneme/sec) (mean+stdev)
 - *Phoneme + pause duration* (ms.) (mean+stdev)

- Measurements **correlated** with dysfluencies
 - False start
 - Inappropriate pauses within phrases

 For suprasegmental features
 ⇒ automatic tracking difficult to implement
 ⇒ ongoing studies to determine the best parameters

We intent to screen all the population with all the parameters
Comparison of 3 approaches

Perceptual evaluation of selected speech dimensions

Acoustic evaluation based on semi-automatic extraction of selected acoustic parameters (patients vs. controls)

Expert annotation of the impaired part of speech

Methods tested on a subset of our population

Comparison of 3 approaches

- 10 expert judges
- 35 items judged on a 5 points scale (0=ok, 4=very impaired)
- 1 min of speech per speakers
- 39 speech files: 35+4 for test-retest

BECD (Auzou & Rolland-Monnoury, 2006):

- Voice quality (12 items)
- Phonetic realization (6 items)
- Prosody (12 items)
- Respiratory (3 items)
- Intelligibility (1 item)
- Naturalness (1 item)

⇒ About 3h of testing

Agreement (+/- 1pt) : 93% intra judge; 83% inter judges
Comparison of 3 approaches

- 1 expert (speech pathologist)
- Evaluation of the speech files by ear and eyes

- Classification of the impaired productions:
 - Inappropriate pauses
 - Voicing/devoicing
 - Phonation problems for vowels
 - Nasalization/denasalization
 - Fortition of fricatives
 - Fricatization of stops
 - Other 'spectral' problems (diphtongs, ...)

very costly in time!

Expert annotation of the impaired part of speech

Comparison of 3 approaches

Acoustic evaluation based on semi-automatic extraction of selected acoustic parameters (patients vs. controls)

1) Orthographic transcription of the production
2) Automatic alignment of the speech files
3) Semi-automatic extraction of a set of acoustic parameters (w/ Praat scripts)

- Nothing very new at this point (!): most of the parameters implemented have been described in the literature
- In process to select parameters applicable & meaningful for a continuous speech corpora
Pre-Processing of the Audio Files

• In order to be able to perform both the manual and automatic acoustic analyses,

Need of:
– Orthographic transcriptions

– Automatic text-constrained phonetic alignment using the LIA tool box

Pre-Processing of the Audio Files:
Orthographic Transcriptions – Automatic alignment

1. Orthographic transcriptions
Each speech production which differs from the original text was annotated using the SAMPA phonetic alphabet?
what level of details, what error to translate, how to translate?

2. Automatic text-constrained phonetic alignment
What precision for the boundaries, necessity for manual correction?
Automatic Phonetic Alignment

When comparing segments produced manually and automatically…

- disagreement rate = proportion of segments with midpoint shift over 20 ms (our reference value)

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control speaker</td>
<td>14%</td>
<td>17%</td>
</tr>
<tr>
<td>Moderate dysarthria</td>
<td>21%</td>
<td>26%</td>
</tr>
<tr>
<td>Severe dysarthria</td>
<td>66%</td>
<td>52%</td>
</tr>
</tbody>
</table>

- but **strong agreement** (manual/automatic) for **spectral** measurements (Formants frequencies…)

Where are we now?

Pre-test on 35 recordings of pathological speech
- 1st manual transcription & automatic alignment

- comparison between manual alignment done by 2 phoneticians on a subset of data
 - add liaison consonants
 - add pauses;
 - errors on segment length (stop consonants, glides, vowels)

⇒**We have to Improve the procedure**

- adapt **transcription conventions**
- adapt the **aligner** LIA:
 - reduce the lexical system we should take into account,
 - remove pronunciation variations
Automatic detection of altered speech zone

Phonetic segmentation

Automatic detection

« normal » speech phonemes

Automated comparison with normalized speech segments

Altered speech mapping

Mapping Exemples

Control population

Patient 1 (slight dysarthria)
Conclusions/Perspectives

Assumption that an acoustico-phonetic description of dysarthric speech has to be apprehended in a comprehensive fashion according to the multiple dimensions of speech production that can be impaired, but also by a systematic testing of all potentially informative acoustic criteria for every dysarthric speakers.

Observing type and range of variations due to motor control deficit can help for a comprehensive model of speech variation for normal speakers.

A better understanding of the variations that permit to consider a dysarthric speech as deviant could provide insights to the boundary between normal and pathological speech.

Acknowledgments

Funded by the ANR BLAN08-0125 of the French National Research Agency

We also thank P. Clément, A. Nurenberg and O. Panseri who are also collaborating to this project

For further information, please visit: http://despho-apady.univ-avignon.fr